Finding the mixed Nash equilibria (MNE) of a two-player zero sum continuous game is an important and challenging problem in machine learning. A canonical algorithm to finding the MNE is the noisy gradient descent ascent method which in the infinite particle limit gives rise to the {\em Mean-Field Gradient Descent Ascent} (GDA) dynamics on the space of probability measures. In this paper, we first study the convergence of a two-scale Mean-Field GDA dynamics for finding the MNE of the entropy-regularized objective. More precisely we show that for any fixed positive temperature (or regularization parameter), the two-scale Mean-Field GDA with a {\em finite} scale ratio converges to exponentially to the unique MNE without assuming the convexity or concavity of the interaction potential. The key ingredient of our proof lies in the construction of new Lyapunov functions that dissipate exponentially along the Mean-Field GDA. We further study the simulated annealing of the Mean-Field GDA dynamics. We show that with a temperature schedule that decays logarithmically in time the annealed Mean-Field GDA converges to the MNE of the original unregularized objective function.
translated by 谷歌翻译
Deep operator network (DeepONet) has demonstrated great success in various learning tasks, including learning solution operators of partial differential equations. In particular, it provides an efficient approach to predict the evolution equations in a finite time horizon. Nevertheless, the vanilla DeepONet suffers from the issue of stability degradation in the long-time prediction. This paper proposes a {\em transfer-learning} aided DeepONet to enhance the stability. Our idea is to use transfer learning to sequentially update the DeepONets as the surrogates for propagators learned in different time frames. The evolving DeepONets can better track the varying complexities of the evolution equations, while only need to be updated by efficient training of a tiny fraction of the operator networks. Through systematic experiments, we show that the proposed method not only improves the long-time accuracy of DeepONet while maintaining similar computational cost but also substantially reduces the sample size of the training set.
translated by 谷歌翻译
Recent works have impressively demonstrated that there exists a subnetwork in randomly initialized convolutional neural networks (CNNs) that can match the performance of the fully trained dense networks at initialization, without any optimization of the weights of the network (i.e., untrained networks). However, the presence of such untrained subnetworks in graph neural networks (GNNs) still remains mysterious. In this paper we carry out the first-of-its-kind exploration of discovering matching untrained GNNs. With sparsity as the core tool, we can find \textit{untrained sparse subnetworks} at the initialization, that can match the performance of \textit{fully trained dense} GNNs. Besides this already encouraging finding of comparable performance, we show that the found untrained subnetworks can substantially mitigate the GNN over-smoothing problem, hence becoming a powerful tool to enable deeper GNNs without bells and whistles. We also observe that such sparse untrained subnetworks have appealing performance in out-of-distribution detection and robustness of input perturbations. We evaluate our method across widely-used GNN architectures on various popular datasets including the Open Graph Benchmark (OGB).
translated by 谷歌翻译
关于稀疏神经网络训练(稀疏训练)的最新研究表明,通过从头开始训练本质上稀疏的神经网络可以实现绩效和效率之间的令人信服的权衡。现有的稀疏训练方法通常努力在一次跑步中找到最佳的稀疏子网,而无需涉及任何昂贵的密集或预训练步骤。例如,作为最突出的方向之一,动态稀疏训练(DST)能够通过在训练过程中迭代发展稀疏拓扑来实现竞争性训练的竞争性能。在本文中,我们认为最好分配有限的资源来创建多个低损失的稀疏子网并将其超级置于更强的基因,而不是完全分配所有资源以找到单个子网络。为了实现这一目标,需要两个Desiderata:(1)在一个培训过程中有效生产许多低损失的子网,即所谓的廉价门票,仅限于用于密集培训的标准培训时间; (2)将这些廉价的门票有效地超级为一个更强的子网,而无需超越约束参数预算。为了证实我们的猜想,我们提出了一种新颖的稀疏训练方法,称为\ textbf {sup-tickets},可以在单个稀疏到较小的训练过程中同时满足上述两个desiderata。在CIFAR-10/100和Imagenet上的各种现代体系结构中,我们表明,SUP-Tickets与现有的稀疏训练方法无缝集成,并显示出一致的性能提高。
translated by 谷歌翻译
少量分类任务旨在根据支持集中的一些标记示例对查询集中的图像进行分类。大多数研究通常假设任务中的每个图像都有一个单一和唯一的类关联。在这些假设下,当支持和查询类之间没有完全匹配时,这些算法可能无法识别适当的类分配。例如,给定几个狮子,自行车和苹果的图像来分类老虎。然而,在更普遍的环境中,我们可以考虑大型食肉动物的更高级别概念,以将老虎与狮子相匹配。由于基于标签的监督与复杂的概念关系不相容,现有研究很少考虑这种情况。在这项工作中,我们向这种更具挑战性的情景,基于语义的少量学习的少数镜头学习,并提出了一种通过互动心理学学习捕获内心语义关系来解决范例的方法。我们在CIFAR-100数据集上评估我们的方法。结果表明了我们所提出的方法的优点。
translated by 谷歌翻译
基于神经网络的高维部分微分方程(PDE)的数值解具有令人兴奋的发展。本文推出了Barron空间中$ -dimimensional二阶椭圆PDE的解决方案的复杂性估计,这是一组函数,即承认某些参数脊函数的积分与参数上的概率测量。我们证明在一些适当的假设中,如果椭圆PDE的系数和源期限位于Barron空间中,则PDE的解决方案是$ \ epsilon $ -close关于$ h ^ 1 $ norm到Barron功能。此外,我们证明了这种近似解决方案的Barron标准的维度显式范围,这取决于大多数多项式在PDE的维度$ D $上。作为复杂性估计的直接后果,通过双层神经网络,PDE的解决方案可以通过双层神经网络在任何有界面的神经网络上近似于尺寸显式收敛速度的$ H ^ 1 $常态。
translated by 谷歌翻译
The diverse demands of different summarization tasks and their high annotation costs are driving a need for few-shot summarization. However, despite the emergence of many summarization tasks and datasets, the current training paradigm for few-shot summarization systems ignores potentially shareable knowledge in heterogeneous datasets. To this end, we propose \textsc{UniSumm}, a unified few-shot summarization model pre-trained with multiple summarization tasks and can be prefix-tuned to excel at any few-shot summarization datasets. Meanwhile, to better evaluate few-shot summarization systems, under the principles of diversity and robustness, we assemble and publicize a new benchmark \textsc{SummZoo}. It consists of $8$ diverse summarization tasks with multiple sets of few-shot samples for each task, covering both monologue and dialogue domains. Experimental results and ablation studies show that \textsc{UniSumm} outperforms strong baseline systems by a large margin across all tasks in \textsc{SummZoo} under both automatic and human evaluations. We release our code and benchmark at \url{https://github.com/microsoft/UniSumm}.
translated by 谷歌翻译
Controllable summarization allows users to generate customized summaries with specified attributes. However, due to the lack of designated annotations of controlled summaries, existing works have to craft pseudo datasets by adapting generic summarization benchmarks. Furthermore, most research focuses on controlling single attributes individually (e.g., a short summary or a highly abstractive summary) rather than controlling a mix of attributes together (e.g., a short and highly abstractive summary). In this paper, we propose MACSum, the first human-annotated summarization dataset for controlling mixed attributes. It contains source texts from two domains, news articles and dialogues, with human-annotated summaries controlled by five designed attributes (Length, Extractiveness, Specificity, Topic, and Speaker). We propose two simple and effective parameter-efficient approaches for the new task of mixed controllable summarization based on hard prompt tuning and soft prefix tuning. Results and analysis demonstrate that hard prompt models yield the best performance on all metrics and human evaluations. However, mixed-attribute control is still challenging for summarization tasks. Our dataset and code are available at https://github.com/psunlpgroup/MACSum.
translated by 谷歌翻译
张张量强大的主成分分析(TRPCA)旨在恢复因稀疏噪声破坏的低排名张量,在许多真实应用中引起了很多关注。本文开发了一种新的全球加权TRPCA方法(GWTRPCA),该方法是第一种同时考虑额外域内切片和额叶间切片奇异值的重要性。利用这些全球信息,GWTRPCA惩罚了较大的单数值,并为其分配了较小的权重。因此,我们的方法可以更准确地恢复低管级组件。此外,我们提出了通过改良的考奇估计量(MCE)的有效自适应学习策略,因为重量设置在GWTRPCA的成功中起着至关重要的作用。为了实现GWTRPCA方法,我们使用乘数的交替方向方法(ADMM)方法设计了一种优化算法。对现实世界数据集的实验验证了我们提出的方法的有效性。
translated by 谷歌翻译
在纠缠和连贯性等计量学中利用量子效应使人们可以测量具有增强灵敏度的参数。但是,时间依赖性的噪声会破坏这种海森堡限制的扩增。我们提出了一种基于量子信号处理框架,以克服这些现实的噪声诱导的实践量子计量学限制。我们的算法将门参数$ \ varphi $〜(单量Z阶段)分开,该算法易受时间依赖性错误与目标门参数$ \ theta $〜(| 10>和| 01> state之间的交换 - 角)易受时间依赖时间的错误。这在很大程度上没有时间依赖性误差。我们的方法实现了$ 10^{ - 4} $径向的准确性,用于学习超导级实验的$ \ theta $,以优于两个数量级的现有替代方案。我们还通过快速的傅立叶变换和顺序相位差异证明了学习时间依赖性栅极参数的鲁棒性。我们从理论和数字上均显示出最佳计量方差缩放的有趣过渡,这是电路深度$ d $的函数,从预抗态度制度$ d \ ll 1/\ theta $ to to Heisenberg限制$ d \ to \ to \ $ $。值得注意的是,在临时策略中,我们的方法对时间敏感参数$ \ varphi $比例的估计差异比渐近的海森伯格限制快速限制为深度的函数,$ \ text {var}(\ hat {\ varphi})\ aid 1/d^4 $。我们的工作是第一个证明在实验室量子计算机中实用应用的量子信号处理算法。
translated by 谷歌翻译